当前位置: 娱乐设备 >> 娱乐设备市场 >> ESShow华南电子展浅谈智能汽车的基石
什么是电子电气架构?电子电气架构包含了车上所有的硬件、软件、传感器、执行机构、电子电气分配系统,电子电气架构是通过系统集成化的工具把这所有的内容整合到一起,它包含了最软件设施、硬件设施和高效的动力和信号分配系统三个基础的要素,在软件设施和硬件设施具备基础上还要一套高效的动力和信号分配系统把这些软件和硬件有机地结合到一起。汽车电气化可以提高车辆的安全性、舒适性和动力性。传统的分布式电子电气架构为一个ECU对应一个功能或少数几个功能,而随着技术的迭代,新型的电子电器架构在汽车领域实现了跨域融合。接下来ESShow华南电子展小编就来聊一聊汽车电子电气架构的发展。
现在的电子电气架构不仅要满足车辆本身的功能和车辆本身的服务,还要延伸到云端,实现车跟车之间的互联、车跟交通设施之间的互联、车跟人之间的互联,这些都将通过电子电气架构来实现,所以将来的电子电气架构是互联的电子电气架构。
一、ESShow华南电子展浅谈电子电气架构的演进方向
在不同的应用场景中,汽车的电子电器架构采用总线系统,以实现控制器之间、控制器与传感器、执行器之间的网络连接。CAN总线、FlexRay和以太网作为新型的总线系统,主要用于控制器之间的连接。选择不同的总线系统可以满足相应的数据传输需求和控制器实时同步的要求。
目前,几乎所有的车载控制器都直接或间接地通过网络相互连接。车载控制器的网络化能够实现某一控制器的传感器信息共享,例如ESP控制器可以向整个与其互联的网络提供实际的车速信息。此外,由于控制器之间强大的网络互联能力,某些新功能完全不需要额外的硬件,只需通过数据交换和相应的控制软件即可实现。
不同的汽车制造商和零部件供应商针对电子电气架构的演进提出了各自的理念。整体方向上为——分布式架构、域集中式架构和中央计算式架构。
1、分布式架构
在这种架构下,每个电控单元(ECU)与实现的功能一一对应。在模块化阶段,ECU的数量众多,并且每个ECU负责一个特定的功能。在集成化阶段,ECU开始集成多个功能。原本由两个ECU分别执行的功能被合并在一个控制器上,该控制器可以同时执行车辆信息显示和娱乐系统功能。
2、域集中式架构
在这种架构中,进一步实现了ECU的集成,并引入了域控制器(DCU)。在集中化阶段,整车被划分为5至7个域,每个域配置一个DCU,每个DCU管理多个ECU。在博世经典的五域架构中,整车被划分为动力域、底盘域、座舱域、自动驾驶域和车身域,完全集成了所有控制功能。
在跨域融合阶段,整车功能在域的层面进一步集成,具有相似性的多个域实现功能融合。由于动力域、底盘域和车身域涉及的计算和通信具有相似性,这三个域合并成整车控制域,与智能座舱域和智能驾驶域共同构成了面向汽车新时代的整车架构。
3、中央计算式架构
在这种架构下,DCU进一步集成,并统一纳入一个中央计算机中。功能与元件之间不再一一对应,而是由中央计算机按需指挥执行器。
在车载计算机阶段,整车由中央计算机进行统一管理,但由于动力、车身、底盘等领域的执行功能复杂,对实时性和安全性的要求较高,仍然会保留基础控制器进行边缘计算。而在车云协同阶段,汽车与云端进行联动,车端计算主要用于车内的实时处理,而云计算则作为车端计算的弹性补充。在这一阶段,不仅需要革新车内的计算能力,还需要进一步完善车联专用网络的建设。
二、ESShow华南电子展浅谈电子电气架构演进的动力
从整车的设计/制造维度来看,如果汽车继续按照当前的分布式架构发展,将导致难以布置更多的ECU和线束,严重影响产线的高度自动化。而集中式电子电气架构可以逐步平抑ECU和线束的增长趋势,甚至在某个时间节点之后,能够大幅减少ECU和线束的使用量,降低EEA网络拓扑的复杂度。减少ECU数量和线束使用量可以降低电子电气系统的重量,对整车的轻量化设计目标也有帮助。
传统的分布式电子电气架构中,一个ECU对应一个或几个功能。每个ECU带有嵌入式软件,通过CAN、FlexRay等总线技术进行连接。其优势在于直接性,例如,如果汽车需要增加蓝牙功能,只需在总线上连接一个能够与其他ECU进行通信的蓝牙控制模块即可实现。这种直接的增加模式操作非常简单,由于各个ECU功能相对独立,单个ECU的故障对整车功能的影响也较小。长期以来,汽车制造商只是根据市场需求不断增加ECU并调整线束布置。
典型汽车线束和ECU的重量约占整车的5%~10%,线束已成为整车重量排名第二或第三的组成部分。而不同的ECU通常由不同的供应商提供,甚至单个ECU中的多个软件也可能来自不同的二级供应商,这导致了算力浪费、功能冗余、功耗增加和OTA管理困难等问题的持续出现。
目前,一辆汽车平均拥有约60个ECU,代码量接近亿行(约为安卓系统代码量的7倍),电子系统占整车成本的46%。然而,分布式架构在功能方面已经达到瓶颈,算力和总线信号传输速度远远落后于电动化和智能化的需求。分布式架构的极限是L2级别的自动驾驶,而L3级别已经超出其承受范围。
例如,为了实现自动驾驶覆盖更多场景,需要对来自专用摄像头、毫米波雷达和激光雷达的信息进行融合,以提高车辆的感知能力。这对数据处理的实时性和传输速度提出了很高的要求,而分布式架构中的ECU和速度为1Mbps的CAN总线显然无法满足这样的任务。以大众的分布式MQB平台为例,CAN总线已经连接了许多ECU,如果再添加雷达,通信协议的容量将不足,必须将所有的CAN总线替换为2Mbps,这相当于对架构进行了部分改造。
同时,三电系统的加入增加了电子电气架构的复杂性,智能座舱、自动驾驶等功能越来越多地依赖于ECU实现,而复杂的分布式电子电气架构大大增加了整车的成本。在智能化时代,汽车将像手机一样进行OTA升级,以提升用户体验、减少维护费用和召回成本。然而,分布式架构中的ECU软件生态复杂,要实现整车OTA,必须对电子电气架构进行彻底的改革,解耦软硬件,简化各个ECU的功能,减少其他ECU对计算资源的浪费,使算力集中在中央,才能迈出实现软件定义汽车的第一步。
正是自动驾驶、智能座舱等智能化功能的涌现,决定了电子电气架构变革的必然性。在功能需求和成本需求的推动下,车企和供应商们纷纷对电子电气架构展开升级,最直观的变化就是独立的ECU被功能更集中、算力更强的域控制器所取代。当汽车采用传输速度更快、算力更强更集中的集中式电子电气架构时,高级别自动驾驶的大门也随之敞开。摄像头、毫米波雷达、激光雷达甚至GPS和轮速传感器的数据不再各自为战,而是通过车载以太网统一传输给同一个"大脑",从而完成车辆位置和环境的识别,极大地提升了车辆在极端环境下的周围情况感知能力。
实现电子电气架构的集中化和ECU的大型化需要支持大型、高算力、低功耗的车载SOC芯片。只有强大的芯片才能满足集中化要求的ECU。从整车的角度来看,大型SOC芯片以及基于其构建的大型域控制器/高性能计算机和先进的线束技术都是实现集中化电子电气架构的关键基础技术。
控制器向中央控制器集成的技术前提是能否将一个控制器中的软件移植到另一个控制器中。硬件与软件之间的解耦使得传感器不再依赖于固定的ECU,而可以被域控制器灵活调用来完成不同的功能,甚至实现硬件的"热插拔",类似于电脑显卡的快速升级和即插即用的特性。
AUTOSAR以创新的方式将控制器软件接口进行了标准化。它提供了一种方法,通过封装面向硬件的功能软件,可以方便地将一个控制器的软件移植到另一个控制器中。在开发电子电气架构时,面临的挑战是如何制定一套优化的解决方案,以实现所开发车辆的功能。这套解决方案需要平衡功能和非功能需求,并最大程度地优化总体成本。
新一代汽车电子电气架构的出现降低了软硬件成本,促使整车制造商和一级供应商投入大量人力和物力进行架构变革。电子电气架构的演进需要综合考虑多个方面的评估,包括高计算性能、高通信带宽、高功率安全性、高网络安全性和软件持续升级更新能力等。
从整车制造商的角度来看,还需要有效的变形管理,实现在相同架构平台下不同车型之间的硬件配置的灵活多样性,具有良好的沿用性和平台共享性。有效的电子电气架构开发评估体系是确保架构开发的重要手段。对于架构的评估,通常从三个主要层面进行分析:首先,架构是否能满足用户当前和未来可能的需求变化;其次,架构是否能实现车型开发成本的最优化;最后,同时兼顾用户需求、开发成本最优化以及满足汽车性能配置的要求。
三、ESShow华南电子展浅谈集中式电子电气架构
当前汽车行业正处于电子电气架构从分布式向域集中的关键阶段,许多汽车制造商开始探索跨域融合的多种方案,目前主要有按功能融合方案和按位置融合方案两种。
按功能融合方案主要采用三域架构,将整车划分为车控域控制器、智能驾驶域控制器和智能座舱域控制器这三个主要功能域,分别负责车辆行驶、自动驾驶和信息娱乐等功能。大众MEB平台的E3架构、宝马iNEXT车型架构和华为CC架构等都属于这种类型。
按位置融合方案主要采用区集中式(ZonalEEA)架构,根据汽车的物理空间将整车划分为多个区域,例如左车身域、右车身域等。每个区域都配备有区域控制器(ZoneECU,ZCU)进行信号传输,并连接到中央计算机,从而大大减少了线束的数量,释放出更多的物理空间。特斯拉和丰田等汽车制造商都属于这种类型。
三域架构
传统的模块集成方式是将模块集中在一起,但其本质上仍然是按照功能划分,模块之间存在明显的隔离,并且与硬件之间有强烈的绑定关系。例如,许多车辆上的车身控制模块(BCM)集成了被动进入和启动系统(PEPS)功能,但如果想将PEPS系统集成到ESP控制器中,传统平台无法兼容,需要大量工作来开发新平台。而域集成则具备兼容性,它在系统和软件层面进行集成,摆脱了硬件绑定的限制。
在大多数域架构设计中,域控制器可以集成其他小型控制器和执行器,提供算法和功能,决定了域的范围。例如,车身域控制器是集成所有车身电子基础驱动、钥匙功能、灯光、门窗等的主控制器。由于车身域控制器可以提供车窗防夹算法、电压补偿、备用驱动等功能,小型控制器无需
转载请注明:http://www.aideyishus.com/lkjg/7013.html